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We present an analysis of the magnetic field distribution in the Abrikosov lattice of high-� superconductors
with singlet pairing in the case where the critical field is mainly determined by the Pauli limit and the
superfluid currents partly come from the paramagnetic interaction of electron spins with the local magnetic
field. The derivation is performed in the frame of the generalized Clem variational method which is valid not
too close to the critical field and furthermore with the Abrikosov-type theory in the vicinity of it. The found
vortex lattice form factor increases with increasing field and then falls down at approach of the upper critical
field where the superconducting state is suppressed.
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I. INTRODUCTION

Recent small-angle neutron-scattering experiments per-
formed on the heavy-fermion superconductor CeCoIn5 have
revealed an unexpected behavior of the vortex lattice �VL�
form factor1–3 defined as the Fourier transform of the local
magnetic field in the vortex lattice. The VL form factor of the
type-II superconductors is usually a decreasing function of
the magnetic field.4 On the contrary, the VL form factor in
CeCoIn5 was found to increase with increasing magnetic
field and then to fall down at the approach of upper critical
field.1,2

CeCoIn5 is a tetragonal, d-wave-pairing superconductor
with a large Ginzburg-Landau �GL� parameter �i.e.,
�=� /��1, where � and � are the two characteristic lengths
of the GL theory�, and with the highest critical temperature
�Tc=2.3 K� among all the heavy fermion compounds.5–7 It
has already generated great interest caused by the signs of
the existence of the Fulde-Ferrell-Larkin-Ovchinnikov
�FFLO� phase for a magnetic field parallel to the ab plane
�and possibly to the c axis�8 and by the presence of a tem-
perature interval 0�T�T0 where the superconducting/
normal phase transition is of the first order.6,8–10 The tem-
perature T0 was found equal to 0.3Tc for the field orientation
parallel to the tetragonal axis.9

The distance between the vortices in the mixed state of
type-II superconductors decreases with increasing magnetic
field. It diminishes with respect to field penetration depth. As
a result the field distribution is smoothed toward Hc2. Hence
the form factor characterizing the sharpness of local field
modulation is also inevitably diminished with increasing
field. The unusual field dependence of the form factor in
CeCoIn5 points out that some other mechanism leads to the
opposite process, namely, to the increasing of fast-field
modulation with field growth. The anomalous magnetic field
dependence of the flux lattice form factor observed by neu-
tron scattering has been attributed to the large paramagnetic
depairing effect in CeCoIn5.11,12

The relative weight of the orbital and the Zeeman mecha-
nisms for suppression of the superconducting state by a
magnetic field is quantified by the Maki parameter
�M =�2Hc20 /Hp, where Hc20=�0 /2��0

2 is the orbital critical
field while Hp=	0 /�2
 is the Pauli-limiting field.

�0�2.07�10−7 G cm2 is the flux quantum. The Maki pa-
rameter is expressed through the Fermi velocity vF=kF /m�

and the critical temperature as �M �Tc /mvF
2 , hence it takes

larger values in heavy fermionic compounds where effective
mass of charge carriers is much larger than the bare electron
mass m��m. Unlike the majority of superconductors, the
Pauli-limiting field in CeCoIn5 is smaller9 than the orbital
critical field by a factor of �3. Hence, the Zeeman interac-
tion plays an important role in the mixed state field and
current distributions.

The role of the paramagnetic mechanism has been inves-
tigated using numerical processing of the quasiclassical
Eilenberger equations.11,12 In the first paper11 the authors
could not reproduce the form factor increasing behavior to-
ward Hc2 observed in CeCoIn5. Then in the subsequent
calculation12 performed with an even stronger paramagnetic
contribution they have obtained the desirable correspon-
dence. The developed numerical procedure has been per-
formed at temperature T=0.2Tc where the phase transition
from the normal to the superconducting state is of the first
order. In this region of the phase diagram an analytical treat-
ment of the problem is impossible. However, at temperatures
higher than T0 and at large Maki parameters one can develop
an analytic theory giving the possibility to compare directly
the roles of the orbital and the Zeeman contributions in the
form-factor field dependence.

Our approach is based on the Clem4 elegant method
which approximates the GL order parameter by a trial func-
tion and allows an analytic solution of the second GL equa-
tion for the local magnetic field. Here we present an analytic
derivation of the magnetic field distribution and VL form
factor taking the paramagnetic effects into account. For this
purpose we shall use the GL theory developed in the
papers13,14 where the diamagnetic superfluid currents are de-
termined not only by the orbital effects but also by the Zee-
man interaction of the electron spins with the local magnetic
field. The Clem-type analysis which makes use of the iso-
lated vortices approximation is valid not too close to the
critical field. Near the critical field it should be completed by
the magnetic field distribution based on the Abrikosov-type
distribution of the order parameter.

By direct solution of the Maxwell equation including the
currents due to electron-spin interaction with magnetic field
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we demonstrate analytically that the VL form-factor growth
is related to sharp changes in the local magnetic field con-
centrated in the cores of vortices that is on a distance on the
order of the coherence length around the vortex axis. The
found form factor decreases with increasing magnetic field in
the high-temperature-low-field region of the phase diagram
while at lower temperatures it turns to the behavior increas-
ing with increasing field and then decreasing to zero at the
approach of the critical field. In accordance with numerical
studies11,12 we have found that the nonmonotonic behavior
reveals itself in case of strong enough paramagnetic contri-
bution. The obtained results qualitatively describe the mag-
netic field dependence of the vortex lattice form factor in any
high-� superconductor with singlet pairing and large Maki
parameter. At the same time we do not pretend on a quanti-
tative correspondence of our findings with the CeCoIn5
form-factor dependence reported in the papers.1–3 In absence
of knowledge of real band structure, the Fermi-surface shape,
pairing mechanism, probable field dependence of the effec-
tive mass, the value and the angular dependence of the g
factor, any theory including the developed numerical
procedure11,12 cannot pretend on a quantitative correspon-
dence with experiment. Therefore, our goal is to develop an
analytical model which gives us a clear picture of the field
distribution in the Abrikosov lattice of the superconductors
with a large Maki-parameter value.

The paper is organized as follows. In Sec. II we briefly
repeat the Clem results and discuss the limitation of their
applicability. Then, in Sec. III the corresponding theory tak-
ing into account the Zeeman interaction is presented. The
behavior of the form factor in the GL region near the critical
field is described in Sec. IV. The concluding remarks are
formulated in Sec. V.

II. ORBITAL FORM FACTOR

Regarding the form-factor field dependence, the particular
symmetry of the flux-line lattice is unimportant. For simplic-
ity we shall consider a square vortex lattice with axis spacing
a=��0 /B formed in a type-II superconductor under mag-
netic field directed along the z axis. The magnetic induction
B=h is determined as the spatial average of the local mag-
netic field h=hẑ=��A. The form factor Fmn is determined
by the Fourier transform of the magnetic field

Fmn = h�qmn� =� d2rh�r�e−iqmn·r, �1�

where qmn= 2�
a �mx̂+nŷ� are the vectors of the reciprocal lat-

tice. For the external field not too close to Hc2, where the
distance between the vortices is larger than the core radius,
the local magnetic field represents the sum of the magnetic
fields of separate vortices h�r�=�ihv�r−ri�. Thus, the form
factor is proportional to the Fourier transform of magnetic
field around one vortex

Fmn =
B

�0
hv�qmn� . �2�

This quantity is related to the intensity of Bragg peaks ob-
served in small-angle neutron-scattering experiments.

Throughout the article we shall consider the form factor F01
that corresponds to the indices �0,1�. We designate it as F.

The GL theory for the VL form factor, valid in the limit
��1 was developed by Clem.4 Starting from the general
form of the order parameter for an isolated vortex

	�r� = 	f�r�e−i� �3�

�� is the azimuthal angle in the plane perpendicular to the
vortex axis�, he proposed to model f�r� by the trial function

f�r� =
r

R
�4�

with R=�r2+�v
2. The variational parameter �v was con-

strained to minimize the vortex total energy and was found to
be in the large � limit �v=�2�, where � is the coherence
length. Clem has calculated the field distribution due to the
orbital current and obtained the form factor

Forb = B
K1�Q�v�

Q�K1��v/��
, �5�

where Q=�q2+�−2, q=2��B /�0, K1�x� is the modified
Bessel function of first order,15 and � is the London penetra-
tion depth. One can write an approximate form of it in the
conditions ��1 and q��−1,

Forb �
�0

�2���2q�vK1�q�v� . �6�

The found form factor slowly decreases with magnetic field.
While the product q�v is smaller than 1, that is not too close
to the upper critical field, the form factor linearly decreases
with field. The formal application of Eq. �6� up to H�Hc2,
where q�v��2�, gives the exponential decrease in the form
factor. In fact in the vicinity of Hc2 the approximation of
independent vortices does not work. The proper calculation
should be done using the Abrikosov16 form of the order pa-
rameter �see Sec. IV� that leads to the vanishing of the form
factor linearly with �Hc2−H�.

Equation �5� is valid in the region of validity of the GL
theory. The latter does work near the critical temperature
�Tc−T� /Tc�1 but not at low temperatures where the gradi-
ent expansion of the free energy is inapplicable and one
needs to take into account the higher-order gradient terms.
Despite of this fact Eq. �5� is widely used in the discussions
of the form-factor field dependence at low temperatures
T�Tc �see for instance Refs. 3 and 17�. The higher-order
gradient terms change the concrete coordinate dependence of
the order parameter near the vortex axis but details of this
dependence have no significant influence on the field distri-
bution in the vortex lattice. Hence, in the strong type-II su-
perconductors even at low temperatures Eq. �5� still gives the
qualitatively correct description of the form-factor magnetic
field dependence for the fields not too close to Hc2.

III. ZEEMAN CONTRIBUTION

The form factor given by Eqs. �5� and �6� is reliable if one
neglects the paramagnetic interaction of the electron spins
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with the magnetic field. The latter leads to two extra features
that are existent in the case of a large enough Maki param-
eter. First, the two characteristic lengths � and � in the above
expression prove to be slightly magnetic field dependent.
Second, a new mechanism originating from the Zeeman in-
teraction gives rise to a contribution to the diamagnetic
screening13 in the high magnetic field region of the phase
diagram. To find it we start with the Ginzburg-Landau for-
mulation including the paramagnetic effects.

The superconductor CeCoIn5 has pairing symmetry
dx2−y2,18 with order parameter

	k�r� = ��k̂�	�r�, ��k̂� = �2 cos�2�� . �7�

For s-wave superconducting state ��k̂�=1. The free energy
of the system is given by the GL functional

F =� d2r� h2

8�
+ �			2 + ��hz − B�			2 + �			4 + �	D		2
 ,

�8�

where D=−i�+2eA is the gauge-invariant gradient �from
here we put �=c=1�, h=rotA is the local internal magnetic
field, and the coefficients in the functional depend on both
temperature T and induction B determined by the spatial av-
erage h�B=Bẑ. In the clean limit they are13,14

� = N0�ln�T/Tc� + Re��w� − ��1/2� ,

� =
d�

dB
=

N0


2�T
Jm���w� ,

� = −
N0

8�2�T�2 �	��k̂�	4�Re��2��w� ,

� = −
N0vF

2

8�2�T�2 �	��k̂�	2k̂x
2�Re��2��w� ,

where ��w� is the digamma function, ��m��w� are its deriva-
tives called by the polygamma functions,15 and

w =
1

2
−

i
B

2�T
.

We shall consider s- and d-wave superconducting states in
a quasi-two-dimensional �2D� crystal with a nearly
cylindrical Fermi surface. For the d-wave order parameter
given above the averages over the Fermi surface are

�	��k̂�	4�=3 /2 and �	��k̂�	2k̂x
2�=1 /2 while for s-wave super-

conductivity and the same Fermi surface the corresponding
averages are 1 and 1/2.

In the paramagnetic limit, when the orbital effect is ne-
glected the transition from the normal to a superconducting
state takes place at the critical field Bc�T� defined by equa-
tion ��T ,B�=0. Along this transition line, the coefficients
��T ,B� and ��T ,B�, which are positive near Tc, become
negative at T�T��0.56Tc. This defines the tricritical point
�T� ,B�� of the phase diagram with B�=Bc�T���1.07Tc /
.
At the tricritical point, the sign change in the coefficient �
signals an instability toward the FFLO state with spatial

modulation of the order parameter 	 while the sign change
in the coefficient � signals a change in the order of the nor-
mal to superconducting phase transition. A more elaborate
treatment including the orbital effects and the higher order
terms in the GL functional14 results in the following effects:
�i� the upper critical field is slightly reduced by value of the
order Bc�T� /�M; �ii� the temperature where the change in the
order of the transition occurs and the one where the FFLO
state arises are decreased by values of the order Tc /�M with
respect to T�. Below we consider only the temperatures
above T� where the � and � coefficients are positive and it is
not necessary to take the higher-order gradient terms into
account.

In the case of a large Maki parameter the GL expansion of
the free energy in powers of the order parameter and its
gradients is valid near the critical field which is mainly de-
termined by the paramagnetic depairing effect.13,14 At
smaller fields strictly speaking the higher-order gradient
terms should be included. The situation is similar to the ap-
plication of the Clem formula at low temperatures discussed
in the previous Section. The higher-order gradient terms
change the concrete coordinate dependence of the order pa-
rameter near the vortex axis but details of this dependence
have no significant influence on the field distribution in the
vortex lattice. Hence, in the strong type-II superconductors
even for the fields noticeably smaller than the critical field
the calculation with a GL functional containing just the
second-order gradient term gives the qualitatively correct de-
scription of the form-factor magnetic field dependence.19

Following Clem’s procedure we consider an isolated vor-
tex with order parameter given by Eqs. �3� and �4� and am-
plitude 	=�	�	 /2�. The field distribution around a single
vortex is determined by the Maxwell equation derived from
the stationary condition of the GL functional with respect to
the vector potential

1

4�
� � hv = j . �9�

The density of current

j = jorb + jZ �10�

consists of two parts originating from two different terms in
the GL functional. The orbital density of current is

jorb = − 8e2��Av�r� −
�0

2�r
�			2�̂ �11�

while the Zeeman current13 is

jZ = �
d

dr
			2�̂ . �12�

Here the vector potential has the form Av�r�=Av�r��̂. Hence,
with the help hv=��Av, we come to the equation that de-
termines the vector potential Av�r�

d

dr
�1

r

d

dr
�rAv�� −

f2

�2Av = −
�0f2

2��2r
− 4��	

2 df2

dr
, �13�

where �=�� /16�e2�	�	 is the penetration depth.
Let us introduce the auxiliary function
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vs�r� =
�0

2�r
− Av�r�

playing the role of superfluid velocity16 and substitute this
into Eq. �13�. We obtain the differential equation with an
inhomogeneous term of Zeeman origin

d

dr
�1

r

d

dr
�rvs�� −

f2

�2vs = 4��	
2 df2

dr
. �14�

The general solution for this equation

vs�r� = vs
i�r� + vs

h�r� �15�

consists of the sum of particular solution of the inhomoge-
neous Eq. �14� and a solution of corresponding homogeneous
equation. The former is given by

vs
i�r� = −

R

r
K1�R/��C�R/�� , �16�

where

C�z� = −
8��	

2 �v
2

�
�

�v/�

z dz

zK1
2�z��

z K1�z�
z2 dz , �17�

chosen such that vs
i�0�=0 and vs

i��=0. The latter condition
is assured by letting the constant be zero in the primitive
�z K1�z�

z2 dz of the function
K1�z�

z2 .
The falling to zero at r→ solution of the homogeneous

equation

vs
h�r� =

�0

2��v

RK1�R/��
rK1��v/��

�18�

meets the requirement that the vector potential

Av�r� =
�0

2�r
− vs

h�r� − vs
i�r� �19�

vanishes on the vortex axis.
One can divide the total vector potential by its orbital part

and its Zeeman part

Av�r� = Aorb�r� + AZ�r� , �20�

where the orbital part

Aorb�r� =
�0

2�r
− vs

h�r� =
�0

2�r
�1 −

RK1�R/��
�vK1��v/��� �21�

is the solution of the Eq. �13� in the absence of the last term
of the Zeeman origin that was found in Ref. 4. The corre-
sponding magnetic field horb=horbẑ is

horb =
�0

2���v

K0�R/��
K1��v/��

�22�

and the form factor is determined by Eq. �5�.
The Zeeman part of the vector potential is given by

AZ�r� = − vs
i�r� =

R

r
K1�R/��C�R/�� . �23�

The corresponding magnetic field hZ=hZẑ reads

hZ�r� =
1

�
�− K0�R/��C�R/�� + K1�R/��C��R/�� . �24�

The numerically found magnetic field coordinate dependence
is shown in Fig. 1.

It is worth noting that the Zeeman term does not spoil the
basic properties of the Abrikosov vortex. Namely, the total
magnetic flux through the surface perpendicular to the vortex
axis is equal to the flux quantum

2��
0



�horb�r� + hZ�r�rdr = 2� lim
r→

r�Aorb�r� + AZ�r� = �0.

�25�

To prove this property, one must take into account the
asymptotic behavior at large distances of functions

K1�z� �� �

2z
e−z, z � 1 �26�

and

C�z� �
8�2��	

2 �v
2

�

ez

z5/2 , z � 1. �27�

The Zeeman part of the vector potential AZ�r� is determined
by the product of these functions and diminishes at r�� as
�1 /r3.

On the other hand at small distances these functions be-
have as

FIG. 1. �Color online� Plot of the radial distribution of the mag-
netic field around a single vortex at induction B=1.0 T and tem-
perature T=1.05T� calculated using parameters pointed out in text.
The lower �blue� curve represents the orbital part of magnetic field
�see the text� while the upper �green� one corresponds to the total
field. The field hZ�r� has significant variation near the vortex core.
While at large distances on the order of the penetration depth �not
shown here� it starts to be negative, such that the total flux around
single vortex is still equal to flux quantum �see text�.
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K1�z� �
1

z
, z � 1 �28�

and

C�z� �
4��	

2 �v
2

�
ln

�z

�v
, z � 1. �29�

For the superfluid velocity given by

vs�r� =
�0

2�r
� RK1�R/��

�vK1��v/��
−

2�

�0
RK1�R/��C�R/��� �30�

at r�� we obtain

vs�r� �
�0

2�r
�1 −

8�2�	
2 �v

2

�0
ln

R

�v

 . �31�

The magnitude of dimensionless combination
8�2�	

2 �v
2

�0
is es-

timated as follows. Using the relations 	
2 �v

2 �vF
2 and

�=N0
Jm���w� /2�T�7��3�m�kF
2B / �2�2�2T2 �we re-
mind that w= 1

2 − i
B
2�T � we come to

8�2�	
2 �v

2

�0
=

7��3�
�3 kFre

�F

T


B

T
� 1. �32�

Here kF is the Fermi momentum, re=e2 /mc2 is the classical
radius of the electron, the product of these values is
kFre�10−5. The ratio of the Fermi energy in heavy
fermionic compounds to the temperature �F /T taken at tem-
peratures T�Tc /2 is not larger than 102 /103. The ratio

B /T�
B /Tc is smaller than 1 even in the compounds with
heavy electron mass. Thus, inequality �Eq. �32� is certainly
carried out.

Hence, we come to the usual expression for the superfluid
velocity

vs�r� �
�0

2�r
�33�

which is valid at r��. Furthermore, as far as we are working
at B�Hc1 the Zeeman term ��hvẑ−B�	 yields just negligi-
bly small correction to the regular term ��B�	 in the GL
equation. It means that the solution of the GL equation for
the isolated vortex has the coordinate dependence

		�r�	
	

��
r

�
, r � �

1 −
�2

r2 , r � ��
as it is in the absence of the Zeeman interaction.16 Here,
�=�� / 	�	 is the coherence length. This justifies the varia-
tional approach making use the order parameter given by
Eqs. �3� and �4�.

The total-field amplitude horb�r�+hZ�r� differs signifi-
cantly from its orbital part horb�r� only at the distances on the
order of �v from the vortex axis �see Fig. 1�. Hence, the
energy of a single vortex is dominated by the orbital field
horb�r�. Therefore the minimization of the energy of a single
vortex gives the same variational parameter �v=�2� as ex-
posed in the Clem paper.4 The lower critical field keeps the

usual value determined with logarithmic accuracy as

Hc1�
�0

2

4��2 ln �.
In the high-� limit, we can find a simpler expression to

the Zeeman internal field by looking at its behavior at dis-
tances r��. By using Eqs. �28� and �29� we find the domi-
nating term in Eq. �24�

hZ � 4��	
2 �v

2

R2 . �34�

We see that hZ�r� has significant variations near the core of a
vortex, the characteristic length associated to it being on the
order of �v �see Fig. 1�. Also the local field amplitude in-
creases with increasing field because � is proportional to B.
The formula �34� may be derived by considering the equa-
tion ��hZ=4�jZ, that is valid in the absence of the orbital
current. From Eq. �24� one can find the correction to Eq.
�34�, �hZ=−4��	

2 K0�R /��ln�R /�v� /�2.
The fast variations in local magnetic field given by the

Zeeman interaction in the vicinity of the vortex axis drasti-
cally changes the form-factor field dependence. One can cal-
culate the Fourier transform of the Zeeman internal field
around a single vortex

hZ�q� =� d2rhZ�r�e−iq·r = 2��
0



rdrJ0�qr�hZ�r� �35�

using Eq. �34� valid for r��. Indeed, one can prove that the
correction to the Fourier transform brought by the region
r�� is negligibly small if q−1�� �that is when the distance
between the vortices is much smaller than the penetration
depth�. Furthermore the accuracy of the approximation Eq.
�34� was validated by numerical integration of the full ex-
pression �Eq. �24�. Therefore in what follows we can work
with expression �34� instead of the more cumbersome Eq.
�24�, the developed approach is applicable to the description
of the VL under the fields which are much larger than the
lower critical field and not too close to the upper critical
field.

By using the coefficients of the Ginzburg-Landau decom-
position �Eq. �8�, we obtain the full expression for the co-
herence length

�2 =
vF

2�	��k̂�	2k̂x
2�Re��2��w�

8�2�T�2�ln�T/Tc� + Re��w� − ��1/2�
. �36�

For the fields far enough from the critical field this formula
gives a slight decrease in the coherence length with increas-
ing field before yielding a strong coherence length increase
below the critical line.

The contribution to the form factor that originates from
the interaction of the electron spins with the local magnetic
field for an array of B /�0 vortices per square centimeter is

FZ =
B

�0
hZ�q� =

8�2�	
2 �v

2

�0
BK0�q�v� . �37�

After substitution of the explicit expressions of all the values
it is
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FZ =
4�N0vF

2
B

�0T

�	��k̂�	2k̂x
2�

�	��k̂�	4�
Jm���w�K0��2q�� , �38�

where we used the relation 	
2 �2=vF

2�	��k̂�	2k̂x
2� /2�	��k̂�	4�.

The gap averages corresponding to the s- and d-wave cases
around a cylindrical Fermi surface are pointed out in the
beginning of the section and show that the form factor is
bigger in the s-wave case than in the d-wave case by a factor
of 3/2.

Let us also rewrite the form-factor orbital contribution
given by Eq. �6� with the coefficients of the model

Forb =
4�vF

2

�0

�	��k̂�	2k̂x
2�

�	��k̂�	4�
	�	�2q�K1��2q�� . �39�

For 
B�2�T we have Jm���w��7��3�
B /�T and
	�	�N0�ln�Tc /T�−7��3��
B /2�T�2. The ratio of the form-
factors �Eqs. �38� and �39� becomes

FZ

Forb
�

7��3�
2B2

�T2

�
K0��2q��

�2q�K1��2q���ln�Tc/T� − 7��3��
B/2�T�2
,

�40�

where ��x� is the Riemann zeta function. For �2q��1 we
observe that the Zeeman part of the form factor prevails over
its orbital part in the phase-diagram region where 
B�T. It
becomes clear why such a type of behavior occurs only in
the superconductors with dominant paramagnetic depairing
effect. Indeed at temperatures T�Tc /2 one can estimate

B /T�B /Hp. For a superconductor characterized by a small
Maki parameter the magnetic field B does not exceed the
orbital critical field B�Hc20, therefore the effect of paramag-
netism becomes unobservable. The ratio of the form factors
depends from Fermi velocity only through the coherence
length. The dominant role played by the Zeeman part of the
form reveals itself at small enough coherence length which
corresponds to the sufficiently small Fermi velocity.

We have plotted in Fig. 2 the total form factor

F = Forb + FZ, �41�

where Forb and FZ are given by Eqs. �5� and �38� correspond-
ingly. In numerical calculations we assumed the values

=g
B /2=
B for the electron magnetic moment in the ma-
terial, and vF=5�105 cm /s for the Fermi velocity inside
the superconducting phase. A value for vF slightly bigger
was given in Ref. 10 as a result of measurements of the
upper critical field Hc2 near Tc. The 2D density of states on
the Fermi surface is given by N0=m� /2��c, where we con-
sidered m�=100 me for the electron effective mass, and
�c=7.6�10−8 cm is the lattice c-axis spacing. In the form-
factor variations, there is first a domination of the orbital part
in the low magnetic field region �FZ vanishes at B=0�. We
observe next a crossover to a region where the paramagnetic
term is dominant. The regime where Eq. �5� goes exactly
against Eq. �38� is likely to explain the observed constant
logarithm of the squared form factor3 in the interval

B=0.5–2T. In addition, these anomalous form-factor varia-
tions were observed in the experiments realized on the
s-wave superconductor TmNi2B2C.17

IV. VICINITY OF PHASE TRANSITION

The observed form factor1,2 falls toward zero near the
phase transition to the normal state. Its field dependence in
this region is out of applicability of the derivation that makes
use of the assumption of isolated noninteracting vortices.
The form factor decrease at the approach of the upper critical
field can be found in the frame of the GL theory valid in the
vicinity of the transition at temperatures above the tricritical
point.

In vicinity of the phase transition the local magnetic
field13 deviates from its average value B=h�r� by

h1�x,y� = − 4���		�x,y�	2 − 			2� . �42�

The order parameter solves the linearized Ginzburg-Landau
equation. For a square vortex lattice with period a=�� /eB it
is

FIG. 2. �Color online� �Above� CeCoIn5 phase diagram for B �c
axis. The color lines represent the temperatures at which we applied
the model. �Below� Variations in the squared form factor F2 at
different temperatures including both the orbital and Zeeman con-
tributions. The dashed lines represent the variations in the orbital
part only.
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	�x,y� = C �
n=−

+

�− 1�ne2�iny/ae−�1/2�B
2 ��x − na + a/2�2

, �43�

so that 		�ma ,na�	=0 �m and n are integer�. Here,
�B=1 /�2eB is the magnetic length. Multiplying the expres-
sion by its complex conjugate we have

		�x,y�	2 = C2 �
m,n=−

+

�− 1�n+me−�1/2�B
2 ��x − na + a/2�2

� e−�1/2�B
2 ��x − ma + a/2�2

e2�i�n−m�y/a. �44�

Now, putting the dummy index n�=n−m, and using Pois-
son’s summation formula16 in the form

�
m=−

+

f�x − ma� =
1

a
�

m=−

+

f̃�2�m

a

e2�imx/a,

where

f̃�q� = �
−

+

dxf�x�e−iqx

is the Fourier transform of f�x�, we get the quantity of inter-
est

		�x,y�	2 =
C2

�2
�

m,n=−

+

�− 1�m+n+mne−��/2��m2+n2�e2�i�mx+ny�/a.

�45�

Its average value is

		�x,y�	2 =
C2

�2
. �46�

Taking into account Eqs. �45� and �46�, the Fourier transform
of the magnetic field, Eq. �42� yields the form factor corre-
sponding to the Bragg peak with indices �m, n�

Fmn = 4��			2�− 1�m+n+mne−��/2��m2+n2�. �47�

The field dependence of 			2 at B�Hc2�T� is known.13 We
write it in the limit of large GL parameter ��1

			2 �
��Hc2 − B�

2�A�
. �48�

Here �=��Hc2� and �A= 			4 / 			22 is the Abrikosov param-
eter. The critical field

Hc2�T� = Bc�T��1 − 2e�/��

is somewhat lower than Bc�T� determined by the equation
��B ,T�=0.13 Finally we obtain for the form factor near the
phase transition line

F = 	F01	 =
2�e−�/2�2�Hc2 − B�

�A�
. �49�

When the transition becomes first order but near the tric-
ritical point the form factor keeps the form of the one calcu-
lated and given by Eq. �47�. However, the main difference
here is that the order parameter takes on a finite value at the
transition. Hence, the form factor discontinuously falls down
to zero at the transition to the normal state.

V. CONCLUSION

Making use of the generalized Clem approach we have
calculated the magnetic field dependence of the vortex lattice
form factor. The interaction of the electron spins with the
space inhomogeneous magnetic field existing inside the su-
perconductor in the mixed state produces diamagnetic cur-
rents of pure paramagnetic origin.13 The corresponding field
concentrated around the vortex cores yields a dominant con-
tribution to the expression of the vortex lattice form factor at
high magnetic field in the superconductors with a small
enough coherence length �that was related here to the Fermi
velocity�. Finally, our analysis showed that the form factor
behaves as the square of the order parameter in the region
close to the upper critical field and therefore it falls down to
zero at the transition to normal state. The fall must be dis-
continuous when the transition becomes first order. These
results give a physical mechanism for the occurrence of
anomalous VL form-factor variations and possibly account
for the measurements that were recently made on CeCoIn5.

ACKNOWLEDGMENT

This work was partly supported by the grant SINUS of the
Agence Nationale de la Recherche.

1 A. D. Bianchi, M. Kenzelmann, L. DeBeer-Schmitt, J. S. White,
E. M. Forgan, J. Mesot, M. Zolliker, J. Kohlbrecher, R.
Movshovich, E. D. Bauer, J. L. Sarrao, Z. Fisk, C. Petrovic, and
M. R. Eskildsen, Science 319, 177 �2008�.

2 J. S. White, P. Das, M. R. Eskildsen, L. DeBeer-Schmitt, E. M.
Forgan, A. D. Bianchi, M. Kenzelmann, M. Zolliker, S. Gerber,
J. L. Gavilano, J. Mesot, R. Movshovich, E. D. Bauer, J. L.
Sarrao, and C. Petrovic, New J. Phys. 12, 023026 �2010�.

3 L. DeBeer-Schmitt, C. D. Dewhurst, B. W. Hoogenboom, C.
Petrovic, and M. R. Eskildsen, Phys. Rev. Lett. 97, 127001
�2006�.

4 J. R. Clem, J. Low Temp. Phys. 18, 427 �1975�.
5 C. Petrovic, P. G. Pagliuso, M. F. Hundley, R. Movshovich, J. L.

Sarrao, J. D. Thompson, Z. Fisk, and P. Monthoux, J. Phys.:
Condens. Matter 13, L337 �2001�.

6 K. Izawa, H. Yamaguchi, Y. Matsuda, H. Shishido, R. Settai, and
Y. Onuki, Phys. Rev. Lett. 87, 057002 �2001�.

7 H. Aoki, T. Sakakibara, H. Shishido, R. Settai, Y. Onuki, P. Mira-
novic, and K. Machida, J. Phys.: Condens. Matter 16, L13
�2004�.

8 A. Bianchi, R. Movshovich, C. Capan, P. G. Pagliuso, and J. L.
Sarrao, Phys. Rev. Lett. 91, 187004 �2003�.

PARAMAGNETIC EFFECTS IN VORTEX LATTICE FIELD… PHYSICAL REVIEW B 82, 104505 �2010�

104505-7

http://dx.doi.org/10.1126/science.1150600
http://dx.doi.org/10.1088/1367-2630/12/2/023026
http://dx.doi.org/10.1103/PhysRevLett.97.127001
http://dx.doi.org/10.1103/PhysRevLett.97.127001
http://dx.doi.org/10.1007/BF00116134
http://dx.doi.org/10.1088/0953-8984/13/17/103
http://dx.doi.org/10.1088/0953-8984/13/17/103
http://dx.doi.org/10.1103/PhysRevLett.87.057002
http://dx.doi.org/10.1088/0953-8984/16/3/L02
http://dx.doi.org/10.1088/0953-8984/16/3/L02
http://dx.doi.org/10.1103/PhysRevLett.91.187004


9 A. Bianchi, R. Movshovich, N. Oeschler, P. Gegenwart, F. Steg-
lich, J. D. Thompson, P. G. Pagliuso, and J. L. Sarrao, Phys.
Rev. Lett. 89, 137002 �2002�.

10 C. F. Miclea, M. Nicklas, D. Parker, K. Maki, J. L. Sarrao, J. D.
Thompson, G. Sparn, and F. Steglich, Phys. Rev. Lett. 96,
117001 �2006�.

11 M. Ichioka and K. Machida, Phys. Rev. B 76, 064502 �2007�.
12 M. Ichioka and K. Machida, J. Phys.: Conf. Ser. 150, 052074

�2009�.
13 M. Houzet and V. P. Mineev, Phys. Rev. B 76, 224508 �2007�.
14 M. Houzet and V. P. Mineev, Phys. Rev. B 74, 144522 �2006�.
15 Handbook of Mathematical Functions, edited by M. Abramovitz

and I. Stegun �Dover, New York, 1965�.
16 A. A. Abrikosov, Fundamentals of the Theory of Metals �North-

Holland, New York, 1988�.
17 L. DeBeer-Schmitt, M. R. Eskildsen, M. Ichioka, K. Machida, N.

Jenkins, C. D. Dewhurst, A. B. Abrahamsen, S. L. Bud’ko, and
P. C. Canfield, Phys. Rev. Lett. 99, 167001 �2007�.

18 A. Vorontsov and I. Vekhter, Phys. Rev. Lett. 96, 237001 �2006�.
19 The numerical comparison between the fourth-order �	D2		2 and

the second-order �	D		2 gradient terms �the coefficients � and �
�Ref. 14� were calculated using parameters pointed out in Sec.
III� shows that the ratio of these terms does not exceed 0.2 even
at smallest field B=0.5 T we are working with. Hence, the treat-
ment making use a GL functional containing just the second
order gradient term gives the firm basis for the calculation of the
vortex lattice form factor at fields which are several times
smaller than the critical field.

V. P. MICHAL AND V. P. MINEEV PHYSICAL REVIEW B 82, 104505 �2010�

104505-8

http://dx.doi.org/10.1103/PhysRevLett.89.137002
http://dx.doi.org/10.1103/PhysRevLett.89.137002
http://dx.doi.org/10.1103/PhysRevLett.96.117001
http://dx.doi.org/10.1103/PhysRevLett.96.117001
http://dx.doi.org/10.1103/PhysRevB.76.064502
http://dx.doi.org/10.1088/1742-6596/150/5/052074
http://dx.doi.org/10.1088/1742-6596/150/5/052074
http://dx.doi.org/10.1103/PhysRevB.76.224508
http://dx.doi.org/10.1103/PhysRevB.74.144522
http://dx.doi.org/10.1103/PhysRevLett.99.167001
http://dx.doi.org/10.1103/PhysRevLett.96.237001

